Predicting Launch Vehicle and Plume Sonic Boom using PCBoom3

Kenneth J. Plotkin Wyle Laboratories

October 30, 2000

Traditional Sonic Boom Analysis

Slender vehicles, linear flow F-function Fixed (or nearly fixed) vehicle geometry Ray tracing in horizontally stratified atmosphere

Flat Earth geometry; Cartesian coordinates

Aircraft perspective

PCBoom3 Software

Traditional ray tracing; originated from Thomas program

Developed under NASA, USAF sponsorship

Variety of aircraft inputs

Computes complete footprints

Computes focal zones

Available from USAF AL/OEBN

Launch Vehicles: Boost Phase

Vertical launch, pitch over to horizontal Expect acceleration focal zone

Do not expect pure N-wave booms, but:

Do expect N-waves if no plume

Expect forward half to be N-like, even with plume

Rocket plume is a variable geometry body Large distances: geocoded trajectories

Obtaining F-Functions Vehicle Alone

Expect N-wave booms at ground Use Carlson s simple N-wave F-function:

Sources of Shape Factor K_S

Carlson: Charts for aircraft and Shuttle Orbiter

Simple, slender bodies: Area distribution Complex bodies:

CFD solutions at various M, angle of attack Project CFD to effective source distribution K_s related to integral of F-fn positive phase:

$$K_{S} = \frac{2^{\frac{1}{4}} \mathbf{g}}{\sqrt{\mathbf{g} + 1}} \frac{1}{L^{\frac{3}{4}}} \left[\int_{0}^{x_{0}} F(x) dx \right]^{\frac{1}{2}}$$

Vehicle-Plume Combination

Predict F-function separately for vehicle and plume

Assemble the two parts one after the other

Vehicle: ordinary N-wave

Plume forward part estimated as partial N, rear part not yet satisfactorily modeled in PCBoom3.

Combined Vehicle and Plume

Vehicle

Plume

Jarvinen-Hill Plume Model

Outer shock

Slip line

Barrel shock

Normal shock

Shape Factor for Forward Part of Plume

Jarvinen-Hill Universal Plume Model:

Size and shape depend on Thrust, Plume Drag, and dynamic pressure. Hypersonic blunt bow.

Tiegermann hypersonic boom model:

Hypersonic blunt body: p depends on D

Developed effective far-field N-wave

Match Tiegermann theory to J-H plume model and Carlson theory:

$$K_S = .6079 \left[\frac{D}{2 \boldsymbol{p} p_{so}} \right]^{3/8} L^{3/4} \boldsymbol{b}^{-1/4}$$

Rear Part of Plume

Expedient: finish off N-wave

OK if all we want is bow shock strength

Used for early analysis, including 1995

Titan

At source: use J-H universal plume shape
Area distribution, linearized flow
Current implementation, used for EELV
At ground: match measured plume booms
Objective of current project

Boom at Ground Current Method

```
Tac = 80.250 \text{ sec}, Phi = .00 \text{ deg}, Carpet boom

Pmax, Pmin = 3.92, -2.74 \text{ psf}, Tg = 214.057 \text{ sec}, Xg, Yg = 174.71, -7.98 \text{ kf}

Lpk = 139.5 \text{ dB}, Lflt = 129.6 \text{ dB}, CSEL = 113.4 \text{ dB}, ASEL = 98.9 \text{ dB}

NPTS = 200 Loud = 113.4 \text{ PLdB}

Ray unit vector: .89770 - .05036 - .43773 Sound speed: 1118.2 \text{ ft/sec}

Phase Vel = 1244. \text{ ft/sec}; Vpx, Vpy = 1242. -70.
```


Other Additions for Launch and Reentry Vehicles

Near-vertical flight paths watch out for singular behavior

TRAJ2TRJ utility to convert geocoded trajectories to local flat Earth

MAPCON utility to convert local flat Earth PCBoom3 output to geocoded

Vehicle K_S from area rule or CFD near field solutions

Plume K_s from J-H model, Tiegerman hypersonic theory

Typical Ascent Boom Footprint

Effect of Plume on Boom

Distance Downtrack, nm

Summary

PCBoom3 is being used for launch vehicle sonic boom analysis

Ascent booms have narrow footprints, focal zones

Plume important for ascent

Plume modeling:

Good results for bow shock, peak pessures

Rear part of plume boom at ground needs work

